วันเสาร์ที่ 21 กันยายน พ.ศ. 2556

ทศนิยม




                  ทศนิยม

1. ทศนิยม


    ทศนิยม หมายถึง การเขียนตัวเลขประเภทเศษส่วนเป็น 10 หรือ 10 ยกกำลังต่างๆ แต่เปลี่ยนรูปจากเศษส่วนมาเป็นรูปทศนิยม โดยใช้เครื่องหมาย . (จุด)แทน

    ตัวอย่าง    ส่วนที่แรเงาคือ 7/10 = 0.7

             
2. การอ่านทศนิยม 

    เลขที่อยู่หน้าทศนิยมเป็นเลขจำนวนเต็ม อ่านเช่นเดียวกับตัวเลขจำนวนเต็มทั่วไป ส่วนตัวเลขหลังจุดทศนิยมเป็นเลขเศษของเศษส่วนซึ่งมีค่าไม่ถึงหนึ่ง อ่านตามลำดับตัวเลขไป เช่น 635.1489 อ่านว่า หกร้อยสามสิบห้าจุดหนึ่งสี่แปดเก้าถ้าเลขจำนวนนั้นไม่มีจำนวนเต็ม จะเขียน 0 (ศูนย์) ไว้ตำแหน่งหลักหน่วยหน้าจุดได้ เช่น .25 เขียนเป็น 0.25 ก็ได้


              
3. การกระจายทศนิยม 

    457.35  = 400 + 50 + 7 + 0.3 + 0.05
    354.41 = 300 + 50 + 4 + 0.4 + 0.01


            
4. การเรียกตำแหน่งทศนิยม 

    ถ้ามีตัวเลขหลังจุดทศนิยมกี่ตัว ก็เรียกเท่านั้นตำแหน่ง เช่น
        0.4 , 15.3 , 458.6     เรียกว่า ทศนิยม 1 ตำแหน่ง
        0.25 , 25.36 , 25.18  เรียกว่า ทศนิยม 2 ตำแหน่ง


              
5. การปัดเศษทศนิยม มีหลักดังนี้

    5.1 ถ้าตัวเลขทศนิยมที่พิจารณา มีค่าตั้งแต่ 6 ขึ้นไป จะปัดทบเข้ากับตัวเลขหน้า เช่น 56.38 = 56.4
    5.2 ถ้าตัวเลขทศนิยมที่พิจารณา มีค่าตั้งแต่ 4 ลงมา จะปัดตัวเลขนั้นทิ้งไป เช่น 56.32 = 56.3
    5.3 ถ้าตัวเลขทศนิยมที่พิจารณา มีค่าเท่ากับ 5 มีวิธีปัดทศนิยม 2 วิธีคือ
        1.) ถ้าทศนิยมหน้าเลข 5 เป็นเลขคู่ ก็ตัดตัวเลข 5 ทิ้ง เช่น 4.65= 4.6
        2. ) ถ้าทศนิยมหน้าเลข 5 เป็นเลขคี่ ให้ปัดทศนิยมขึ้น เช่น 0.75 = 0.8


              
6. ทศนิยม และเศษส่วน 


    6.1 การเขียนทศนิยมให้เป็นเศษส่วน
        ตัวอย่าง จงเขียน 2.5 ให้เป็นเศษส่วน
            วิธีทำ 2.5 = 2 กับ 5 ใน 10 

            ดังนั้น 


    6.2 การเขียนเศษส่วนให้เป็นทศนิยม
        1.) เศษส่วนที่มีส่วนเป็น 10 หรือ 100 หรือ 10 ยกกำลัง สามารถเปลี่ยนเป็นทศนิยมได้เลย เช่น 75/100 = 0.75
        2.) เศษส่วนที่ไม่มีส่วนเป็น 10 หรือ 100 หรือ 10 ยกกำลัง ให้เปลี่ยนเป็นเศษส่วนที่มีส่วนเป็น 10 หรือ 100 หรือ 10 ยกกำลังก่อน  เช่น 

                                              
              ภาคผนวก




ทดสอบความเข้าใจ


ข้อ 1. 0.75 ไม่เท่ากับจำนวนใด
        ก. 3/4
        ข. 15/20
        ค. 20/25
        ง. 75/100
ข้อ 2. 8 บาท 75 สตางค์ เท่ากับกี่บาท
        ก. 8.75
        ข. 8.57
        ค. 87.5
        ง. 875
ข้อ 3. น้ำตาลทราย 2 กิโลกรัม 3 ขีด เท่ากับกี่กิโลกรัม
        ก. 2.03
        ข. 2.3
        ค. 3.2
        ง.5



เฉลย   ข้อ 1. ตอบ ค.
           ข้อ 2. ตอบ ก.
           ข้อ 3. ตอบ ข.
  

ทศนิยม ตอนที่ 1 : คณิตพื้นฐาน ม.1



จำนวนที่อยู่ในรูปทศนิยมแบ่งออกเป็น 2 ส่วน ส่วนแรก คือส่วนที่เป็นจำนวนเต็ม ส่วนที่ 2 คือส่วนที่เป็นทศนิยมโดยที่จะมีจุดคั่นตรงกลาง 
วันเสาร์ที่ 14 กันยายน พ.ศ. 2556

การบวก



การบวก
การบวก คือกระบวนการทางคณิตศาสตร์โดยการรวมสิ่งของเข้าด้วยกัน เครื่องหมายบวก (+) ถูกใช้แทนความหมายของการบวกจำนวน หลายจำนวน   นอกจากการนับจำนวนแล้วการบวกสามารถนำเสนอได้โดย การรวมกลุ่มปริมาณทางรูปธรรม หรือ นามธรรมอื่นๆ โดยใช้ประเภทที่แตกต่างกัน ของจำนวน เช่น  จำนวนลบ เศษส่วน  จำนวนตรรกยะ เวกเตอร์ ฯลฯ

ในฐานะของการดำเนินการทางคณิตศาสตร์ การบวกดำเนินตามแบบแผนที่สำคัญบางประการ เช่นการบวกมีสมบัติการสลับที่ หมายความว่าลำดับของการบวกนั้นไม่สำคัญ และการบวกมีสมบัติการเปลี่ยนหมู่ นั่นคือเราสามารถบวกกันได้มากกว่าสองจำนวน  การบวกซ้ำๆ ด้วย  1  มีความหมายเหมือนการนับ ในขณะที่การบวกด้วย   0  จะไม่ทำให้จำนวนเปลี่ยนแปลง   นอกจากนี้การบวกยังคล้อยตามกฎเกณฑ์ที่ทำนาย ได้ เกี่ยวกับการดำเนินการที่เกี่ยวข้องเช่นการลบและการคูณ กฎเกณฑ์ทั้งหมดเหล่านี้ สามารถพิสูจน์ได้โดยเริ่มต้นจากการบวกของจำนวนธรรมชาติ  แล้วขยายขอบเขตออกไปยังจำนวนจริงและสูงขึ้นไป การดำเนินการทวิภาคทั่วไปที่คล้อยตามแบบแผนเหล่านี้ มีการศึกษาในพีชคณิตนามธรรม

การบวกเป็นหนึ่งในงานที่พื้นฐานที่สุดที่เกี่ยวข้องกับจำนวนตัวเลข การบวกของจำนวนน้อยๆ สามารถเรียนรู้ได้ตั้งแต่ยังเป็นเด็กเล็ก เด็กทารกอายุห้าเดือนรวมทั้งสัตว์บางชนิดก็สามารถรับรู้ว่า 1 + 1 จะได้ผลอะไร ในการเรียนระดับประถมศึกษา เด็กนักเรียนจะได้เรียนรู้การบวกจำนวนในระบบเลขฐานสิบ โดยเริ่มต้นจากจำนวนเลขหลักเดียว และพัฒนาการแก้ปัญหาในระดับที่ยากขึ้น เครื่องกลที่ช่วยคำนวณการบวกก็แตกต่างกันไป ตั้งแต่ลูกคิดโบราณจนไปถึงคอมพิวเตอร์สมัยใหม่ซึ่งการค้นคว้าวิจัย เกี่ยวกับการบวก ที่มีประสิทธิภาพมากที่สุดยังคงดำเนินมาจนถึงทุกวันนี้


ตัวอย่างที่ 1 : A = 5 และ B = 3

ผลบวกของ  A + B จะมีค่าเท่ากับ ผลรวมของ A และ

ดังนั้น A + B  = 5 + 3  =   8  จะอธิบายดังรูป


                                                                                      นับจำนวน ในรูป


                                      จากรูปจะได้           A =  5          +           B  =  3               =      ?    

ทำการนับจำนวนทั้งหมด จะได้ผลบวกดังรูป



5                         +                  3                 =                  8

ตอบ                   8


ตัวอย่างที่ 2 : A = 7 และ B = 7

ผลบวกของ  A + B จะมีค่าเท่ากับ ผลรวมของ A และ

ดังนั้น A + B  = 7 + 7  =   14  จะอธิบายดังรูป


                                                                                     นับจำนวน ในรูป


 

                                      จากรูปจะได้           A =  7          +           B  =  7               =      ?    

ทำการนับจำนวนทั้งหมด จะได้ผลบวกดังรูป



7                         +                  7                               =                  14

 ตอบ                14


ตัวอย่างที่ 3 :  A = 7 และ B = 10

ผลบวกของ  A + B จะมีค่าเท่ากับ ผลรวมของ A และ

ดังนั้น A + B  = 7 + 10  =   17  จะอธิบายดังรูป


                                                                                      นับจำนวน ในรูป
        


                                      จากรูปจะได้           A =  7          +           B  =  10               =      ?    

ทำการนับจำนวนทั้งหมด จะได้ผลบวกดังรูป


 

                                7               +                  10           =                  1 

ตอบ                17


ตัวอย่างที่ 4 :  A = 12 และ B = 6

ผลบวกของ  A + B จะมีค่าเท่ากับ ผลรวมของ A และ

ดังนั้น A + B  = 12 + 6  =   18  จะอธิบายดังรูป


                                                                                    นับจำนวน ในรูป

 

                                      จากรูปจะได้           A =  12          +           B  =  6               =      ?    

ทำการนับจำนวนทั้งหมด จะได้ผลบวกดังรูป


 

12             +             6               =                  18

ตอบ                18


การ์ตูนสอนบวกเลข


              การบวกเป็นพื้นฐานในการเรียนคณิตศาสตร์ เกี่ยวข้องกับจำนวนตัวเลข การบวกของจำนวนน้อยๆ สามารถเรียนรู้ได้ตั้งแต่ยังเป็นเด็ก โดยเริ่มต้นจากการนับและบวกเลขจากนิ้วมือ และอาจใช้เพลงเป็นสื่อกลางในการเรียน เพื่อดึงดูดความสนใจให้เด็กอยากเรียนรู้
ที่มา : https://sites.google.com/site/naruk126/sux-kar-sxn-khnitsastr/kar-bwk-lekh
http://www.goonone.com/index.php/2010-04-27-02-22-59/75-12-
http://www.goonone.com/index.php/2010-04-27-02-22-59/79-13-                                          
http://www.youtube.com/watch?v=sXHZ1yoFlDk
วันเสาร์ที่ 14 กันยายน พ.ศ. 2556

เส้นขนานและมุมภายใน


เส้นขนานและมุมภายใน 

 เส้นขนานและมุมภายใน
  

นิยาม เส้นตรงสองเส้นที่บนระนาบเดียวกันขนานกันเมื่อเส้นทั้งสองนี้ไม่ตัดกัน
หลักการง่ายที่ใช้พิจารณาว่าเส้นตรงสองเส้นขนานกันหรือไม่
1. ถ้าเส้นตรงสองเส้นขนานกันและมีเส้นตัดแล้วขนาดของมุมภายในที่อยู่บนข้างเดียวกันของ
เส้นตัดรวมกันเป็น 180 องศา
2. ถ้าเส้นตรงเส้นหนึ่งตัดเส้นตรงคู่หนึ่ง ทำให้ขนาดของมุมภายในที่อยู่บนข้างเดียวกันของเส้น
ตัดรวมกันเป็น 180 องศาแล้ว เส้นตรงคู่นี้จะขนานกัน
บทนิยาม
เส้นตรงสองเส้นขนานกัน และมีเส้นตรงเส้นหนึ่งตัดเราเรียกมุมที่อยู่ภายในระหว่างเส้นคู่ขนานเรียกว่า มุมภายใน
มุมภายในบนข้างเดียวของเส้นตัด

ab // cd มีเส้นตรง ef ตัด ทำให้เกิดมุมภายในบนข้างเดียวกันของเส้นตัดสองข้าง คือ มุม 1 กับ 3 และ มุม 2 กับ 4
ตัวอย่าง 1
ab // cd มีเส้นตรง ef ตัด ทำให้เกิดมุมภายในบนข้างเดียวกันของเส้นตัดสองข้าง คือ มุม 1 กับ 3 และ มุม 2 กับ 4


ตัวอย่าง 2

กำหนดให้ ab และ cd แต่ละรูปขนานก้น มุมภายในบนเส้นเดียวกันของเส้นตัดบวกกันได้ 180°

ถ้าเส้นตรงสองเส้นขนานกันและมัเส้นตัดแล้ว ขนาดของมุมภายในที่อยู่บนข้างเดียวกันของเส้นตัดรวมกันเป็น 180 องศา

ตัวอย่าง 3 จงหาค่าของมุม a ในกรณีต่อไปนี้
a = 180° - 125° = 55°


ถ้าเส้นตรงเส้นหนึ่งตัดเส้นตรงคู่หนึ่ง ทำให้ขนาดของมุมภายในที่อยู่บนข้างเดียวกันของเส้นตัดรวมกันเป็น 180 องศาแล้ว เส้นตรงคู่นั้นจะขนานกัน

เส้นขนาน ตอนที่ 6 : ติวเข้มสอบเข้า ม.1




ในเรื่องของเส้นขนานข้อสอบชั้นมัธยมศึกษาปีที่ 1 จะเน้นในเรื่องของมุมซึ่งประกอบไปด้วย มุมแหลม มุมป้าน ในข้อสอบในเรื่องของเส้นขนานนี้มักจะออกเป็นรูปภาพ ซึ่งเด็ก ๆ จำเป็นที่จะต้องมองภาพให้ออก แล้วจะช่วยให้สามารถหาคำตอบได้เร็วขึ้น



ที่มา : https://sites.google.com/site/bumbim54811426/hnwy-thi4-sen-khnan/4-1-sen-khnan-laea-mum-phayni
http://www.youtube.com/watch?v=uMgRvbVAEw0
วันเสาร์ที่ 14 กันยายน พ.ศ. 2556